AI28 R-CNN 논문 리뷰 서론딥러닝의 발전과 함께 컴퓨터 비전 분야는 급격한 변화를 겪고 있습니다. 그중에서도 객체 탐지(Object Detection)는 이미지나 비디오에서 특정 객체를 찾아내고, 그 위치를 정확히 예측하는 중요한 과제입니다. 이 과제는 자율 주행, 영상 감시, 의료 영상 분석 등 다양한 분야에서 활용되며, 딥러닝의 주요 연구 주제 중 하나입니다.오늘 살펴볼 논문은 R-CNN (Region-based Convolutional Neural Networks) 입니다. R-CNN은 2014년 Ross Girshick가 주도한 연구로, 객체 탐지의 성능을 크게 향상시킨 모델입니다.Pascal VOC 2012 데이터셋에서 mAP 가 53.3% 로 이전 최고 결과보다 30% 향상되었습니다.이 글에서는 R-CNN의 기본 개.. 2024. 9. 3. SVM(Support Vector Machine) 이란? [R-CNN] 1. SVM 이란??SVM, 즉 Support Vector Machine은 지도 학습(Supervised Learning)의 한 종류로,주어진 데이터를 기반으로 새로운 데이터를 분류하는 데 사용되는 강력한 알고리즘입니다.이 모델은 기본적으로 데이터를 분류할 수 있는 최적의 경계(또는 선)를 찾는 일을 합니다.2. SVM의 기본 아이디어는 최적의 경계를 찾는 것!SVM은 두 클래스 사이의 Decision Boundary(결정 경계)를 찾습니다. 이 경계는 데이터를 가장 잘 분리할 수 있는 선을 의미합니다.예를 들어,키와 몸무게라는 두 가지 특징을 데이터를 이용해 사람들을 "운동 선수"와 "비운동 선수"로 분류하려고 합니다. 각 사람의 키와 몸무게는 좌표 평면에 점으로 나타낼 수 있습니다. SVM은 이 점들.. 2024. 9. 3. Bottom-up Region Proposals 이란? [R-CNN] 컴퓨터 비전에서 객체 검출(Object Detection)은 이미지에서 특정 객체의 위치를 찾아내고,그 객체가 무엇인지를 식별하는 복잡한 작업입니다. 하지만 이미지 전체를 대상으로 모든 가능한 위치에서 객체를 찾으려면, 그 계산 비용은 엄청나게 커지게 됩니다.바로 이 문제를 해결하기 위해 등장한 개념이 Region Proposals 입니다.그 중에서도 오늘 이야기할 주제는 Bottom-up Region Proposals 입니다. 이 블로그는 R-CNN 논문에서 연결되는 개념입니다.1. Region Proposals란 무엇인가요? 간단히 말해, Region Proposals(영역 제안)은 이미지에서 객체가 있을 가능성이 높은 후보 영역을 찾아내는 과정입니다. 이러한 영역 제안은 객체 검출 과정에서 중요한 .. 2024. 9. 3. AlexNet 논문 리뷰 1. AlexNet 무엇인가? 120 만 개의 고해상도 이미지를 1000개의 서로 다른 클래스로 분류한AlexNet은 인공지능의 ILSVRC에서 2012년에 당시 오차율 16.4%로 다른 모델 보다 압도적으로 우승한 모델입니다.현재 시점에서 수치를 보면 그렇게 좋은 정확도가 아니지만, 대회 당시에는 굉장한 정확도였다고 합니다.2011년에 우승했던 모델의 오차율이 25.8%였으니, 오차율 성능이 40% 만큼 좋아졌습니다.AlexNet의 'Alex'는 모델 논문의 저자인 Alex Khrizevsky의 이름 입니다. 논문링크https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf2. AlexNet 구조 .. 2024. 8. 23. 이전 1 2 3 4 5 6 7 다음